An Experimental Comparison of Binary and Floating Point
Representations in Genetic Algorithms

Cezary Z. Janikow*
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599, USA

Abstract

Genetic Algorithms (GAs) are innovative
search algorithms based on natural phenom-
ena, whose main advantages lie in great ro-
bustness and problem independence. So far,
GAs were most successful in parameter opti-
mization domains; however, even there cer-
tain problems, as lack of fine local tuning
capabilities and severe time complexity, pro-
hibit their wider use on most moderately and
highly complex problems. Recently, there
has been a growing interest in the floating
point (FP) representation for genetic algo-
rithms. In this paper we empirically study
both FP and binary based GAs using a dy-
namic control problem — highly complex
and quite difficult for any method. Results
suggest that the well known advantages of
low cardinality alphabets can be compen-
sated for by designing new operators, and
that such approach provides means for over-
coming some of the mentioned disadvantages.

1 INTRODUCTION

The binary alphabet offers the maximum number of
schemata per bit of information of any coding [6] and
consequently the bit string representation of solutions
has dominated genetic algorithm research. This cod-
ing also facilitates theoretical analysis and allows ele-
gant genetic operators. But the ‘implicit parallelism’
result does not depend on using bit strings [1] and it
may be worthwhile to experiment with large alphabets
and (possibly) new genetic operators.

Present address: Department of Mathematics and
Computer Science, University of Missouri, St. Louis, Mis-
souri 63121-4499

Zbigniew Michalewicz
Department of Computer Science
University of North Carolina
Charlotte, NC 28223, USA

In [7] the author wrote:

“The use of real-coded or floating-point genes
has a long, if controversial, history in artifi-
cial genetic and evolutionary search schemes,
and their use as of late seems to be on the
rise. This rising usage has been somewhat
surprising to researchers familiar with funda-
mental genetic algorithm (GA) theory ([6],
[10]), because simple analyses seem to sug-
gest that enhanced schema processing is ob-
tained by using alphabets of low cardinality,
a seemingly direct contradiction of empirical
findings that real codings have worked well
in a number of practical problems.”

The same paper presents a theory of convergence for
real-coded GAs that use floating point codings in their
chromosomes, and discusses it further:

“Although the theory helps suggest why
many problems have been solved using real-
coded GAs, it also suggests that real-coded
GAs can be blocked from further progress in
[some] situations.”

However, we argue that some modifications of genetic
operators on float point representation may result in
a much better performance; these may be also very
useful when the problem to be solved involves non-
trivial constraints ([12], [13], [14]), and they can help
in avoiding such “blocked” situations. Moreover, the
search space of the floating point representation is (to
a very close degree) equivalent to the problem space.
This, in turn, allows a more conscious design of prob-
lem specific operators, and actually extends the idea
of using a special coding (as Grey) to bring the two
spaces together.

Subsequently, we empirically compare a binary imple-
mentation with a floating point implementation using

various new operators. As a test case we selected a
non—trivial, non—decomposable dynamic control prob-
lem [15]. The results, due to the limited context of
such experiments, should be looked at as a case, rather
than generalizable, study; more systematic experimen-
tations must be performed to draw more convincing
conclusions.

2 THE TEST CASE

For experiments we have selected the following dy-
namic control problem:

N-1
min <az%\, + Z (x3 + ui))

k=0

subject to
Tpe1 =Tk +ug, k=0,1,...,N -1,

where xg is a given initial state, x; € R is a state,
and @ € RY is the sought control vector. The optimal
value can be analytically expressed as

J* = K()LL%
where K}, is the solution of the Riccati equation

K = 1+Kk+1/(1+Kk+1) and Ky =1

During the experiments a chromosome represented a
vector of the control states @. We have also assumed a
fixed domain (—200,200) for each u; (actual solutions
fall withing this range for the class of tests performed).
For all subsequent experiments we used zo = 100 and
(unless otherwise stated) N = 45. Therefore, a chro-
mosome was represented by a vector @ = (ug, - . . , U44),
having the optimal value J* 16180.4.

3 THE TWO IMPLEMENTATIONS

For the study we have selected two genetic algorithm
implementations differing only by representation and
applicable genetic operators, and equivalent otherwise.
Such an approach gave us a better basis for a more di-
rect comparison. Both implementations used the same
selective mechanism: stochastic universal sampling [2].

3.1 THE BINARY IMPLEMENTATION

In the binary implementation each element of a chro-
mosome vector was coded using the same number of
bits. To facilitate a fast run time decoding, each ele-
ment occupied its own word (in general it could occu-
pied more than one if the number of bits per element

exceeded the word size, but this case is an easy ex-
tension) of memory: this way, to read gene’s values,
elements could be accessed as unsigned integers, which
removed the need for binary to decimal decoding (it
still required representation range — domain scaling).
Then, each chromosome was a vector of N words, with
N equals the number of elements per chromosome (or
again a multiple of such for cases where multiple words
were required to represent desired number of bits).

The precision of such an approach depends (for a fixed
domain size) on the number of bits actually used, and
equals (UB — LB)/(2" — 1), where UB and LB are
domain bounds and n is the number of bits per one
element of a chromosome.

3.2 THE FLOATING POINT
IMPLEMENTATION

In the floating point (FP) implementation each chro-
mosome vector was coded as a vector of floating point
numbers, of the same length as the solution vec-
tor. Each element was later initialized within the de-
sired range, and the operators were carefully designed
(closed) to preserve this requirement.

The precision of such an approach depends on the un-
derlying machine, but is generally much better than
that of the binary representation. Of course, we can
always extend the precision of the binary representa-
tion by introducing more bits, but this considerably
slows down the algorithm (see Section 5). In addition,
the FP representation is capable of representing quite
large domains (or cases of unknown domains). On
the other hand, the binary representation must sacri-
fice the precision for an increase in domain size, given
fixed binary length.

4 THE EXPERIMENTS

The experiments were conducted on a DEC3100 work-
station. All presented results represent the average
values obtained from 10 independent runs. During all
experiments the population size was kept fixed at 60,
and the number of iterations was set at 20,000. Unless
otherwise stated, the binary representation was using
n = 30 bits to code one variable (one element of the
solution vector), needing 30 - 45 = 1350 bits for the
whole vector.

Because of possible differences in interpretation of dif-
ferent operators, we accepted a probability of chromo-
somes’ update as a fair measure of effort between the
floating point and binary representations. Then, all
experiments were conducted with individual operators

probabilities set to achieve the same such update rates.
Accordingly, we could compare runs of both implemen-
tations with approximately the same rate of function
evaluations. (the number of function evaluations was
approximately equal to population size x update rate
x number of iterations).

4.1 RANDOM MUTATION AND
CROSSOVER

In this part of the experiment we ran both implemen-
tations with operators which were equivalent (at least
for the binary representation) to the traditional ones.

4.1.1 Binary

The binary implementation used traditional operators
of mutation and crossover. However, for compatibil-
ity with the FP implementation, we allowed crossover
points to fall between elements only. The probability
of crossover was fixed at 0.25, while the probability of
mutation varied to achieve desired rate of chromosome
update (shown in Table 1).

Table 1: Relation between Probabilities of Chromo-
some’s Update and Mutation Rate

Table 2: Average Results as a Function of Probability
of Chromosome’s Update

Probability of chromosome’s update std.

0.6 0.7 0.8 0.9 0.95 dev.

Bin | 42179 | 46102 | 29290 | 52769 | 30573 | 31212
FP | 46594 | 41806 | 47454 | 69624 | 82371 | 11275

Probability of chromosome’s update

0.6 0.7 0.8 0.9 0.95
Bin | 0.00047 | 0.00068 | 0.00098 | 0.0015 | 0.0021
FP 0.014 0.02 0.03 | 0.045 | 0.061
4.1.2 FP

The crossover operators was analogous (and actually
equivalent) to that of the binary implementation (split
points between float numbers) and applied with the
same probability (0.25). The mutation, which we call
random, applies to a floating point number rather that
to a bit, with an appropriate probability as to achieve
the same rates of chromosome’s updates (same number
of function evaluations) as for the binary case (see Ta-
ble 1); the result of such a mutation is a random value
from the domain (LB,UB) with a uniform distribu-
tion (special non—uniform distributions will be used in
so called “dynamic mutation” introduced in Section
4.2.1).

4.1.3 Results

The results (Table 2) are slightly better for the bi-
nary case; however, it is rather difficult to judge them
better as all fell quite away from the optimal solu-
tion (16180.4). Moreover, an interesting pattern that

emerged showed that the FP implementation was more
stable, with much lower standard deviation.

In addition, it is interesting to note that the above ex-
periment was not quite fair for the FP representation;
its random mutation behaves “more” randomly than
that of the binary implementation, where changing a
random bit (with a uniform distribution) doesn’t im-
ply producing a totally random value from the domain.
As an illustration let us consider the following ques-
tion: what is the probability that after mutation an
element will fall within 6% of the domain range (400,
since the domain is (—200,200)) from its old value?
The answer is:

FP : Such probability clearly falls in the range (4,2 -
0). For example, for § = 0.05 it is in (0.05,0.1).

Binary : Here we need to consider the number of low
order bits that can be safely changed. Assuming
n = 30 as an element length and m as the length
of permissible change, m must satisfy m < n +
log, 8. Since m is an integer, then m = |n +
log, §]. Again, for § = 0.05, m = 25, and the
sought probability is m/n = 25/30 = 0.833 —
quite a different number.

Therefore, we will try to design a method of compen-
sating for this drawback in the following subsection.

4.2 DYNAMIC MUTATION

In this part of the experiments we ran, in addition to
the operators discussed in Section 4.1, a special dy-
namic mutation operator aimed at both improving a
single element tuning and reducing the above disad-
vantage of random mutation in the FP implementa-
tion.

4.2.1 FP

The new operator is defined as follows: if st =
(v1,...,Um) is a chromosome (¢ is the generation num-
ber) and the element vy, was selected for this mutation,

the result is a vector s, = (vy,..., v}, ..., vy), where
if a random digit is 0

YT\ v — A(t,up — LB) if a random digit is 1

, { vg + A, UB — vy)
The function A(¢,y) returns a value in the range [0, y]
such that the probability of A(¢,y) being close to 0
increases as t increases. This property causes this op-
erator to search the space uniformly initially (when ¢ is
small), and very locally at later stages; thus increasing
the probability of generating the new number closer to
its successor than a random choice. We have used the
following function:

A@w):y(l—ﬂh%y)

where r is a uniform random number from [0..1], T
is the maximal generation number, and b is a system
parameter determining the degree of dependency on
iteration number (we used b = 5).

4.2.2 Binary

To be more than fair to the binary implementation,
we modeled the dynamic operator into its space, even
though it was primarly introduced to improve the FP
mutation. Here, it is analogous to that of the FP, but
with a differently defined v},

vy, = mutate(vy, V(t,n)),

where n = 30 is the number of bits per one element of
a chromosome; mutate(vy, pos) means: mutate value
of the k-th element on pos bit (0 bit is the least signif-
icant), and

V(t,n) :{ |A(t,n)]

with the b parameter of A adjusted appropriately if
similar nonuniformity is desired (for examples see Fig-
ure 1).

if a random digit is 0
if a random digit is 1

A(t,y) A(t,y)
y y

t/T =0.2 t/T =0.7

1 1

Figure 1: A function for two selected times and b = 4

4.2.3 Results

We repeated similar experiments to those of section
4.1.3 using also the dynamic mutations applied at the
same rate as the previously defined mutations.

Table 3: Average Results as a Function of Probability
of Chromosome’s Update

Probability of
chromosome’s update std.
0.7 0.8 0.9 dev.
Bin | 32275 | 35265 | 30373 | 40256
FP | 21098 | 20561 | 26164 | 2133

Now the FP implementation shows a better average
performance (Table 3). In addition, again the binary’s
results were more unstable. However, it is interesting
to note here that despite its high average, the binary
implementation produced the two single best results
for this round (16205 and 16189).

4.3 OTHER OPERATORS

In this part of the experiment we decided to imple-
ment and use some additional operators — those easy
to implement in each space. Therefore, the purpose
of this part of the experiment was not to compare
both implementations in exactly the same context, but
rather to see what level of quality could be obtained
by using a set of easily implementable operators. Ac-
tually, this is where we start to distinguish between
problem-independent and problem—dependent opera-
tors, to show that problem—specific operators are su-
perior.

4.3.1 Binary

In the binary representation, the space is that of binary
strings. This provides for the highly acclaimed opera-
tor problem—independence, since all operators can be
defined in this space regardless of the underlying prob-
lem space. In addition to those previously described
operators, we implemented a multi—point crossover,
and also allowed for the classical crossovers (crossover
points within bits of an element). The multi—point op-
erator was introduced to set aside the single vs. muilt—
point crossover debate; the probability of a crossover
split was controlled by a system parameter (set at 0.3).

4.3.2 FP

In the floating point representation we deal directly
(disregarding finite precision) with the problem space.
Therefore, we can easily define new operators acting

on real space vectors rather that some artificial agents.
Accordingly, in addition to those previously described
operators, we also implemented an analogous multi—
point crossover, and single and multi—point arithmeti-
cal crossovers; They average values of two correspond-
ing elements (rather that exchange them), at selected
points. Such operators have the property that each
element of the new chromosomes is still within the
original domain. A version of such an arithmetical
crossover averages two whole chromosomes along all
dimensions, and simulates finding a midpoint between
two points of a real space. For more details on these
operators an interested reader is referred to [11], [13],
[12], [18].

4.3.3 Results

Table 4: Average Results as a Function of Probability
of Chromosome’s Update

Probability of
chromosome’s update std.

0.7 0.8 0.9 | dev. Best
Bin | 23814 | 19234 | 27456 | 6078 | 16188.2
FP | 16248 | 16798 | 16198 54 | 16182.1

Here the FP implementation shows an outstanding su-
periority (Table 4); Even though the best results are
not so much different, only the FP was consistent in
achieving that.

5 TIME PERFORMANCE

Many complain about the high time complexity of GAs
on nontrivial problems. In this section we compare the
time performance of both implementations using the
mutation and crossover as defined in Section 4.1.

Table 5: CPU Time (sec) as a Function of Number of
Elements

Number of elements (V)
5 15 25 35 45
Bin | 1080 | 3123 | 5137 | 7177 | 9221
FP 184 | 398 | 611 823 | 1072

Table 5 compares CPU time for both implementations
on varying number of elements in the chromosome.
The FP version is much faster, even for the moder-
ate 30 bits per variable in the binary implementa-
tion; Both times are linear in the chromosome’s length.
Since we executed approximately the same number of

function evaluations, and there was no need for binary
decoding other than domain scaling (see Section 3.1),
the major factor for these differences had to be the op-
erator selection mechanisms. Furthermore, since the
crossover operators were, in fact, identical, the muta-
tion mechanisms had to contribute mostly. Actually,
the reasons for such time disparities in these mecha-
nisms are easily visible from Table 1: while seeking
applicable mutation antities, the binary implementa-
tion iterates over all bits of a chromosome, but the
floating point implementation iterates only over all el-
ements of a chromosome. In other words, if other op-
erations of the implementations were neglected, one
would expect the binary one to run slower by the fac-
tor equal to the number of bits required to represent
one gene (30 in the above run). The above fact was
confirmed by measuring time spent in various parts of
each algorithm. Note that the above holds only for our
definitions of floating representation operators; if one
wished to model these operators on the classical ones,
the outcome might be quite different.

From the above discussion follows that the time dis-
parity between binary and floating point implementa-
tions is directly proportional to the number of bits per
one gene of the former. This implies that for problems
which, due to some problem specific goals, require high
precision, and, therefore, a longer bitwise gene repre-
sentation, the difference should increase. This claim is
exemplified in Table 6.

Table 6: CPU Time (sec) as a Function of Number of
Bits Per Element; N = 45

Number of bits per binary element

5 10 20 30 40 50
Bin | 4426 | 5355 | 7438 | 9219 | 10981 | 12734
FP 1072 (constant)

6 SUMMARY

The results of the conducted experiments indicate that
the floating point representation is faster, more consis-
tent from run to run, and provides higher precision
(especially with large domains where binary coding
would require prohibitively long representation). At
the same time its performance can be enhanced by spe-
cial operators to achieve high (even higher than that
of the binary representation) performance accuracy.
The design of such operators is, however, easy in the
representation space approximately equivalent to the
problem space. This approach abandons the idea of
problem—independent operators; however, the floating

point representation was introduced especially to deal
with real parameter problems and we see no drawbacks
of tailoring the operators to such domains.

These results support other studies praising the float-
ing point representation, e.g. [7] gives the follow-
ing reasons for such a preference: (1) comfort with
one-gene-one-variable correspondence, (2) avoidance
of Hamming clifs and other artifacts of mutation oper-
ating on bit strings treated as unsigned binary integers,
(3) fewer generations to population conformity.

Acknowledgments: This research was supported by
a grant from the North Carolina Supercomputing Cen-
ter.

References

[1] Antonisse, J., A New Interpretation of Schema
Notation that Overturns the Binary Encoding
Constraint, in [17], pp. 86-91.

[2] Baker, J.E., Reducing Bias and Inefficiency in the
Selection Algorithm, in [9].

[3] Bosworth, J., Foo, N.; and Zeigler, B.P., Compar-
ison of Genetic Algorithms with Conjugate Gra-
dient Methods, Washington, DC, NASA (CR-
2093), 1972.

[4] Davis, L., (Editor), Genetic Algorithms and Sim-
ulated Annealing, Pitman, London, 1987.

[5] De Jong, K.A., Genetic Algorithms: A 10 Year
Perspective, in [8], pp.169-177.

[6] Goldberg, D.E., Genetic Algorithms in Search,
Optimization and Machine Learning, Addison
Wesley, 1989.

[7] Goldberg, D.E., Real-coded Genetic Algorithms,
Virtual Alphabets, and Blocking, University of Illi-
nois at Urbana-Champaign, Technical Report No.
90001, September 1990.

[8] Grefenstette, J.J., (Editor), Proceedings of the
First International Conference on Genetic Algo-
rithms, Pittsburg, July 24-26, Lawrence Erlbaum
Associates, Publishers, 1985.

[9] Grefenstette, J.J., (Editor), Proceedings of the
Second International Conference on Genetic Al-
gorithms, MIT, Cambridge, July 28-31, Lawrence
Erlbaum Associates, Publishers, 1987.

[10] Holland, J., Adaptation in Natural and Artifi-
cial Systems, Ann Arbor: University of Michigan
Press, 1975.

[11] Janikow, C., and Michalewicz, Z., Specialized
Genetic Algorithms for Numerical Optimization
Problems, Proceedings of the International Con-
ference on Tools for AI, Washington, November
6-9, pp.798-804, 1990.

[12] Michalewicz, Z. and Janikow, C., GENOCOP: A
Genetic Algorithms for Numerical Optimization
Problems with Linear Constraints, to appear in
Communications of ACM, 1991.

[13] Michalewicz, Z. and Janikow, C., Genetic Algo-
rithms for Numerical Optimization, Statistics and
Computing, Vol.1, No.1, 1991.

[14] Michalewicz, Z. and Janikow, C., Handling Con-
straints in Genetic Algorithms, Proceedings of the
4th International Conference on Genetic Algo-
rithms, San Diego, July 13-16, 1991.

[15] Michalewicz, Z., Krawczyk, J., Kazemi, M.,
Janikow, C., Genetic Algorithms and Optimal
Control Problems, Proceedings of the 29th IEEE
Conference on Decision and Control, Honolulu,
pp-1664-1666, December 5-7, 1990.

[16] Schaffer, J., Caruana, R., Eshelman, L., and Das,
R., A Study of Control Parameters Affecting On-
line Performance of Genetic Algorithms for Func-
tion Optimization, in [17], pp.51-60.

[17] Schaffer, J., (Editor), Proceedings of the Third
International Conference on Genetic Algorithms,
George Mason University, June 4-7, 1989, Mor-
gan Kaufmann Publishers, 1989.

[18] Vignaux, G.A. and Michalewicz, Z., A Genetic
Algorithm for the Linear Transportation Problem,
IEEE Transactions on Systems, Man, and Cyber-
netics, Vol.21, No.2, 1991.

